
 Sirindhorn International Institute of Technology 

Thammasat University 

School of Information, Computer and Communication Technology 

 

 

ECS452 2014/1 Part I.2 Dr.Prapun
2.29. For our present purposes, a better code is one that is uniquely de-

codable and has a shorter expected length than another uniquely decodable
code. We do not consider other issues of encoding/decoding complexity or
of the relative advantages of block codes or variable length codes. [3, p 57]

2.2 Optimal Source Coding: Huffman Coding

In this section we describe a very popular source coding algorithm called
the Huffman coding.

Definition 2.30. Given a source with known probabilities of occurrence
for symbols in its alphabet, to construct a binary Huffman code, create a
binary tree by repeatedly combining7 the probabilities of the two least likely
symbols.

• Developed by David Huffman as part of a class assignment8.
7The Huffman algorithm performs repeated source reduction [3, p 63]:

• At each step, two source symbols are combined into a new symbol, having a probability that is the
sum of the probabilities of the two symbols being replaced, and the new reduced source now has
one fewer symbol.

• At each step, the two symbols to combine into a new symbol have the two lowest probabilities.

◦ If there are more than two such symbols, select any two.

8The class was the first ever in the area of information theory and was taught by Robert Fano at MIT
in 1951.

◦ Huffman wrote a term paper in lieu of taking a final examination.

◦ It should be noted that in the late 1940s, Fano himself (and independently, also Claude Shannon)
had developed a similar, but suboptimal, algorithm known today as the ShannonFano method. The
difference between the two algorithms is that the ShannonFano code tree is built from the top down,
while the Huffman code tree is constructed from the bottom up.

15



• By construction, Huffman code is a prefix code.

Example 2.31.

x pX(x) Codeword c(x) `(x)

1 0.5
2 0.25
3 0.125
4 0.125

E [`(X)] =

Note that for this particular example, the values of 2`(x) from the Huffman
encoding is inversely proportional to pX(x):

pX(x) =
1

2`(x)
.

In other words,

`(x) = log2

1

pX(x)
= − log2(pX(x)).

Therefore,

E [`(X)] =
∑
x

pX(x)`(x) =

Example 2.32.

x pX(x) Codeword c(x) `(x)

‘a’ 0.4
‘b’ 0.3
‘c’ 0.1
‘d’ 0.1
‘e’ 0.06
‘f’ 0.04

E [`(X)] =

16



Example 2.33.

x pX(x) Codeword c(x) `(x)

1 0.25
2 0.25
3 0.2
4 0.15
5 0.15

E [`(X)] =

Example 2.34.

x pX(x) Codeword c(x) `(x)

1/3
1/3
1/4
1/12

E [`(X)] =

x pX(x) Codeword c(x) `(x)

1/3
1/3
1/4
1/12

E [`(X)] =

2.35. The set of codeword lengths for Huffman encoding is not unique.
There may be more than one set of lengths but all of them will give the
same value of expected length.

Definition 2.36. A code is optimal for a given source (with known pmf) if
it is uniquely decodable and its corresponding expected length is the shortest
among all possible uniquely decodable codes for that source.

2.37. The Huffman code is optimal.

17



2.3 Source Extension (Extension Coding)

2.38. One can usually (not always) do better in terms of expected length
(per source symbol) by encoding blocks of several source symbols.

Definition 2.39. In, an n-th extension coding, n successive source sym-
bols are grouped into blocks and the encoder operates on the blocks rather
than on individual symbols. [1, p. 777]

Example 2.40.

x pX(x) Codeword c(x) `(x)

Y(es) 0.9
N(o) 0.1

(a) First-order extension:

E [`(X)] =

YNNYYYNYYNNN...

(b) Second-order Extension:

x1x2 pX1,X2
(x1, x2) c(x1, x2) `(x1, x2)

YY
YN
NY
NN

E [`(X1, X2)] =

(c) Third-order Extension:

x1x2x3 pX1,X2,X3
(x1, x2, x3) c(x1, x2, x3) `(x1, x2, x3)

YYY
YYN
YNY

...

E [`(X1, X2, X3)] =

18


